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Abstract: In the last three decades, the development of functional magnetic resonance imaging (fMRI)
has significantly contributed to the understanding of the brain, functional brain mapping, and resting-
state brain networks. Given the recent successes of deep learning in various fields, we propose
a 3D-CNN-LSTM classification model to diagnose health conditions with the following classes:
condition normal (CN), early mild cognitive impairment (EMCI), late mild cognitive impairment
(LMCI), and Alzheimer’s disease (AD). The proposed method employs spatial and temporal feature
extractors, wherein the former utilizes a U-Net architecture to extract spatial features, and the latter
utilizes long short-term memory (LSTM) to extract temporal features. Prior to feature extraction,
we performed four-step pre-processing to remove noise from the fMRI data. In the comparative
experiments, we trained each of the three models by adjusting the time dimension. The network
exhibited an average accuracy of 96.4% when using five-fold cross-validation. These results show that
the proposed method has high potential for identifying the progression of Alzheimer’s by analyzing
4D fMRI data.

Keywords: Alzheimer’s disease; 3D U-Net; deep learning

1. Introduction

As the most common form of age-related dementia [1,2], Alzheimer’s disease (AD)
is a neurodegenerative disorder characterized by memory loss, impaired thinking, and
behavioral problems. It manifests due to disturbances in communication between different
regions of the brain [3]. AD often leads to the death of nerve cells and loss of brain tissue,
with the brain shrinking and malfunctioning over time [4]. Immediately prior to AD,
the brain is subject to mild cognitive impairment (MCI) [5]. It has been determined that
15% of the population over 65 years of age already has MCI, and more than half of those
individuals suffer from AD after five years [6]. The brain states leading up to AD can be
divided into three stages: EMCI, LMCI, and AD. To realize preventative measures, AD
must be predicted at early stages. Accordingly, several prior studies have focused on
predicting the initial state.

In the field of healthcare, advances in magnetic resonance imaging (MRI) have enabled
the efficient observation of brain conditions, making more information available for early-
stage AD prediction. Structural MRI has revealed atrophy in the medial temporal and
cingulate cortices, as well as more widespread pathology. Eskildsen et al. [7] used the
thickness of the brain cortex to identify the transition between MCI and AD with 80% accuracy.
Beheshti et al. [8] distinguished AD patients from healthy controls (HCs) using voxel-based
morphometric techniques to extract global and local gray matter. AliHaidr Syaifullah et al. [9]
obtained a result of 90.5% in the diagnosis of AD using support vector machines (SVM) on
a limited dataset. Lolis nanni et al. [10] successfully identified AD and CN cases with an
accuracy of 90.8% using transfer learning. They used a 3D convolutional neural network
(CNN) model and conducted experiments using AlexNet, GoogleNet, and ResNet among
other datasets. Furthermore, they conducted experiments on MCI convert AD (MCIc) vs.
MCI not-convert AD (MCInc) and MCIc vs. CN, achieving accuracies of 71.2% and 84.2%,
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respectively. Nikhil J. Dhinagar et al. [11] utilized the vision transformer (ViT), a prominent
model in the field of computer vision, to detect AD from sMRI data. They achieved an
accuracy of 89%, demonstrating the capability of ViT to process brain images.

Several studies have used rest-state functional MRI (rs-fMRI), which has demonstrated
extremely high sensitivity for AD [12]. Consequently, rs-fMRI has been reported to exhibit
high performance in distinguishing AD [7]. Using rs-fMRI, Grieder et al. [13] found that a
decline in neural connection complexity is directly related to AD. This result verifies the
relationship between MCI and AD, as connection complexity begins to decline with the
former. Additionally, rs-fMRI has been reported to show functional connectivity associated
with cognitive impairments in aging populations with health problems, MCI, and AD. Each
stage must be distinguished according to changes in neural complexity.

In the field of neurology, various deep learning models have been deployed to analyze
fMRI data. Typically, analyses to distinguish between AD and CN states are conducted
using a CNN model [7,14–17]. However, 2D fMRI data has generally been used for binary
classification. Further research must be conducted on the multi-class classification of 2D
fMRI data.

Unlike previous studies, we propose a deep learning network that considers spa-
tiotemporal features to identify the decreasing interregional connectivity complexity of
the brain and simultaneously distinguish brain states. The temporal features are obtained
from rs-fMRI, which best identifies changes in brain networks. We employed a 3D-CNN
architecture based on U-Net to extract spatial characteristics. By conserving the time axis,
this architecture allows for an output with the same shape as the input, which is ideal for
extracting temporal information. Because recurrent neural networks (RNNs) represent the
best approach for processing time-series data, we employed an RNN structure to extract
temporal features using this conserved time information. The long short-term memory
(LSTM) algorithm is used to process one of several RNN structures, and the fully connected
layers are then used for classification. Thus, we constructed a model that achieves an
accuracy of 96.4%. Furthermore, we conducted experiments by utilizing 1 × 1 convolution
to adjust the temporal dimension, halving it and making adjustments at quarter intervals.

2. Related Works
2.1. Alzheimer’s Disease

AD is an irreversible neurodegenerative disorder that has recently emerged as part of
the human lifespan. At the time of its initial identification in 1906 by the German doctor
Alois Alzheimer, the disease had a relatively low prevalence with only a small number of
individuals affected by it. Today, it is the leading cause of dementia in 10% of individuals
over 65 and half of those over 85. Currently, there are no medical treatments that can fully
cure or prevent AD; its progression can only be slowed. Accordingly, it is critical to detect
AD early and begin treatment to slow its progression. It is imperative to detect MCI, also
known as the pre-dementia stage, early and initiate appropriate treatment. Although MCI
is known to cause mnemonic and cognitive decline, 10–15% of patients progress to AD
every year with no significant disruption to their daily lives. This indicates that the early
detection of MCI can slow its progression to AD [12].

Among the various approaches to diagnosing AD, fMRI is a non-invasive method-
ology that can be used to diagnose the brain with the highest detail. rs-fMRI is an fMRI
method that measures functional brain activity and neurological changes by photographing
the brain over a set period [15]. This technique enables the identification of brain regions
with functional connectivity to specific regions in the dormant brain (seed-based functional
connectivity analysis and independent component analysis), understanding of the charac-
teristics of multiple brain regions (graph-based network analysis), and interpretation of
spontaneous activity patterns (local homogeneity, low-frequency vibration analysis, and
Hurst index analysis). Many attempts have been made to identify neurological states with
a focus on the ability to analyze brain connectivity.
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2.2. U-Net

The U-Net [18] model, which won the 2015 ISBI Cell Tracking Challenge by a wide
margin, has demonstrated accurate image segmentation performance with a minimal volume
of learning data. The encoder–decoder structure obtains features at each layer, increasing the
number of channels and decreasing the dimensionality during the encoding process. This is
referred to as the contracting path. Only low-dimensional encoded information is used in
the decoding step to decrease the number of channels and increase dimensionality, thereby
restoring a high-dimensional image. This is known as the extended path. The configurations of
the reduction and extension paths are symmetrical. The encoder–decoder-structured network
loses precise position information on the image object during the encoding stage owing to
dimensionality reduction, and it is unable to compensate for this loss during the decoding
stage because it only employs low-dimensional information. The fundamental idea behind
U-Net is to position images accurately while extracting their attributes by utilizing both low-
and high-dimensional information. To achieve this, we concatenated the features from each
layer of the encoding stage into each layer of the decoding stage, with the layers linked via
skip connection. Figure 1 represents the architecture of U-net.
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2.3. Time-Series Network

The RNN—a deep learning network that produces results utilizing continuous data,
or data with a time axis—performs at the greatest level. This architecture is an example
of an artificial neural network wherein circulating structures are created by connecting
hidden nodes to edges in certain directions.

The input from the time step may be received as shown in Figure 2, and the outcome may
be modified for use. However, if backpropagation is performed throughout each time step, a
large time step significantly increases network depth, which poses the issues of vanishing and
expanding gradients. Another problem is that long-term patterns cannot be learned.
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Figure 2. Example of RNN.

Although the RNN and LSTM both adopt a chain structure, the LSTM’s module has a
structure in which four layers exchange information. To determine what to remember, input,
forget, and output gates are added to the memory cell by altering the hidden layer of the
RNN. Compared with conventional RNNs, LSTM demonstrates outstanding performance
when processing lengthy input sequences.

fMRI data are time-series data. Owing to the above characteristics, Gao et al. employed
an RNN to analyze fMRI data and estimate age [19]. Li et al. used LSTM to identify brain
states associated with specific events by analyzing connectivity [20]. Parmer et al., who
inspired our study, used LSTM alongside a CNN to classify CN, EMCI, LMCI, and AD [21].
The present study utilized LSTM because of its proven high performance in interpreting
the temporal characteristics of fMRI data.

3. Materials and Methods
3.1. Pre-Processing

We used the online Alzheimer’s Disease Neuroimaging Initiative (ADNI) online
database [22]. In ADNI, resting-state fMRI volumes were acquired for 699 subjects dis-
tributed among four classes—CN, EMCI, LMCI, and AD—in the ADNI2 phase. Table 1
lists the number of participants in each class.

Table 1. Number of subjects in four classes.

CN EMCI LMCI AD

197 238 159 118

• CN—108F/89M, age: 65–96
• EMCI—142F/96M, age: 56–90
• LMCI—58F/101M, age: 57–88
• AD—56F/62M, age: 56–89

The flip angle was 80◦ with a repetition time of 3000 ms and an echo time of 1 ms.
A total of 140 functional volumes were acquired. Each volume had 48 axial slices with
a thickness of 3.313 mm. Two normalization methods were applied: direct and indirect.
Indirect normalization requires sMRI images, whereas direct normalization—which we
adopted in this study—uses only fMRI images. The pre-processing constitutes four steps,
and it was performed using the MATLAB SPM12 toolbox. In the first step, as shown in
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Figure 3a, samples were realigned to eliminate noise caused by head movement. Specifically,
rigid body registration was performed to correct the signal values by considering the
translation or rotation of the head position during MRI. The next step, slice timing, corrected
any discrepancies in the time of sample acquisition. Subsequently, normalization was
performed to convert the brain images of all participants into standardized shapes to
facilitate individual comparisons. We set the voxel size parameter to (2, 2, 2). Finally,
smoothing was performed to correct the value of each voxel by averaging the value of a
neighboring voxel. Thus, the signal-to-noise ratio (SNR) was improved by eliminating the
high-frequency band. Generally, these values are corrected using a Gaussian full width
at half maximum (FWHM) kernel. These pre-processing steps were performed using the
functions provided by SPM12. Subsequently, fMRI was performed to obtain an image
of (79, 95, 79, 140). Because this shape is not appropriate for our model’s input, it was
converted to (128, 128, 128, 140).
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3.2. Model

fMRI images represent 4D data in 3D space with a 1D time axis. Considering these
characteristics, the proposed method consists of two steps. The 3D-CNN first extracts
spatial characteristics and then passes them to the LSTM model to extract temporal charac-
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teristics. We employed the U-Net architecture to extract spatial features. The execution was
performed by changing the time axis of the data between three sizes in consideration of the
dataset’s size. The lengths of the time axes were initially 140 and changed to 70 and 35 using
a 1 × 1 convolution. Following the extraction of spatial features, LSTM was used to process
140, 70, and 35 functional volume time-series data points containing temporal information.
Temporal features were extracted using LSTM, and classification was performed using a
fully connected layer. The final layer employed the softmax function as the active function.

3.3. Spatial Feature Extraction

The 3D-CNN used to extract spatial features was constructed using the U-Net model
based on an encoder–decoder structure [12]. A normal encoder–decoder-based network
reduces the dimensions in the encoding step and restores them in the decoding step to
generate high-dimensionality output. However, when dimensionality is reduced by the
encoder, detailed location information about the image is inevitably lost. The encoding and
decoding layers are connected using skip connections, and each layer result is concatenated,
as in U-Net. Figure 4 shows spatial feature extractor architecture.
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Our model input is 4D data containing a time axis. We considered three approaches
to handle inputs: keeping the time axis intact and using 1 × 1 convolutions to reduce the
time axis by 2 and 4, as in Parmar et al. [17]. Table 2 lists the model layers used in this
study. During downsampling, the image size was halved by setting the stride to 2 for
convolutional operations. Conversely, during upsampling, the image size was restored
using transpose convolutional operations with a stride set to 2. As shown in Table 2, each
model’s symmetrical structure was adjusted to have 140, 70, or 35 channels in the last layer
to maintain temporal information. The depth of each model was slightly different owing to
the limitations of computing power. A detailed layer configuration of the spatial feature
extractor can be found in Table 3.
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Table 2. Time-axis layer and output of intact and reduced models. During 1 × 1 convolution, the
stride was set to 2, which halved the size of the image. Conversely, when upsampling the image, a
transpose convolution with a stride of 2 was used to double the size of the image.

Spatial Feature Extractor Intact Reduced 1/2 Reduced 1/4

Input 128 × 128 × 128 × 140 128 × 128 × 128 × 70 128 × 128 × 128 × 35
Layer 1 64 × 64 × 64 × 280 64 × 64 × 64 × 140 64 × 64 × 64 × 70
Layer 2 32 × 32 × 32 × 560 32 × 32 × 32 × 280 32 × 32 × 32 × 140
Layer 3 16 × 16 × 16 × 1120 16 × 16 × 16 × 560 16 × 16 × 16 × 280
Layer 4 8 × 8 × 8 × 2240 8 × 8 × 8 × 1120 8 × 8 × 8 × 560
Layer 5 16 × 16 × 16 × 1120 4 × 4 × 4 × 2240 4 × 4 × 4 × 1120
Layer 6 32 × 32 × 32 × 560 8 × 8 × 8 × 1120 2 × 2 × 2 × 2240
Layer 7 64 × 64 × 64 × 280 16 × 16 × 16 × 560 4 × 4 × 4 × 1120
Layer 8 128 × 128 × 128 × 140 32 × 32 × 32 × 280 8 × 8 × 8 × 560
Layer 9 - 64 × 64 × 64 × 140 16 × 16 × 16 × 280

Layer 10 - 128 × 128 × 128 × 70 32 × 32 × 32 × 140
Layer 11 - - 64 × 64 × 64 × 70
Layer 12 - - 128 × 128 × 128 × 35

Table 3. Layer Detail. CB unit is convolution and batch normalization. CTB unit is transpose
convolution and batch normalization. All convolutions and transpose convolutions proceeded with a
stride of 2.

Intact Reduced 1/2 Reduced 1/4

CB Unit
CB Unit
CB Unit
CB Unit

CTB Unit CB Unit
CTB Unit CB Unit

CTB Unit
CTB Unit

- CTB Unit
- CTB Unit
- - CTB Unit
- - CTB Unit

3.4. Temporal Feature Extractor and Classifier

The rs-fMRI data are 4D data with a time axis obtained by photographing a 3D image
during a unit of time. Spatial and temporal features must be considered simultaneously
to accurately measure brain conditions. Temporal information is extracted using LSTM,
which specializes in time-series data processing. Unlike spatial feature extractors, temporal
feature extractors feature a straightforward structure. Each LSTM is adjusted with 140, 70,
or 35 channels, and the flatten layer is used for classification. Figure 5 presents the temporal
extractor’s structure.

Following the extraction of temporal features, classification is performed using fully
connected layers. The first fully connected layer yields an output of 256 shapes resulting
from the temporal feature. The second fully connected layer classifies the output between
four classes using the softmax function.

3.5. Hyperparameters

Five-fold cross-validation was performed during the trial. The dataset was separated
into five files, four of which were utilized for training, and one of which was used for valida-
tion. Training was conducted evenly in each class. We employed the Adam optimizer [23]
as represented by Equations (1)–(3).

mt = β1mt−1 + (1− β1)∇ω J(ωt), (1)



Sensors 2023, 23, 6330 8 of 14

vt = β2mt−1 + (1− β2)(∇ω J(ωt))
2, (2)

ωt+1 = ωt −mt
η√

vt + ε
, (3)

where ε = 1−8, β1 = 0.9, and β2 = 0.999.
Training was performed every 100 epochs with an initial learning rate of 0.00001 that

decreased using exponential decay. Dropout was set to 0.2 to avoid overfitting. Based on
the GPU NVIDIA RTX A6000, a network configured in this manner required 25 h to learn.

With the exception of pre-processing, all training and testing procedures were per-
formed in a Python environment using TensorFlow. Training required approximately four
days to complete over 100 epochs.
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4. Experimental Results

The experiment was performed with three models with different time axes. The three
models are compared and evaluated quantitatively in Section 4.1. In the experiment, five-
fold cross-validation was performed to evaluate the performance of each model. Section 4.2
presents and explains the performance metrics.

4.1. Proposed Model

Table 4 displays the accuracy results obtained by applying five-fold cross-validation
for each fold. The average accuracy of models with a quarter-reduced time axis was
91.8%. In contrast, models with a half-reduced time axis exhibited an average of 95.22%,
which suggests that many properties included on the time axis were lost with a significant
reduction. Models without a time-axis reduction achieved an average accuracy of 96.28%.
Although it required a relatively lengthy learning process, the 140-channel model exhibited
the highest accuracy for each class. All models obtained good representations of AD
and CN; however, when there were fewer channels, EMCI and LMCI performed poorly,
indicating that a more advanced network is required to distinguish between the two. Such
a network must have a time-resolution effect to detect slight variations between two classes.
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Table 4. Five-fold cross-validation accuracy performance of three models.

140 Channel (%) 70 Channel (%) 35 Channel (%)

Test 1 96.1 95.7 92.4
Test 2 96.4 94.8 92.2
Test 3 95.8 95.4 92.3
Test 4 96.7 95.1 91.6
Test 5 96.4 95.1 91.4

Average 96.28 95.22 91.8

4.2. Performance Metrics

Figure 6 represents the results using a confusion matrix according to the time associated
with each model’s peak performance. Performance was evaluated using precision, recall,
F-score, and accuracy, computed using Equations (4)–(7). Although the 140-channel model
performed best across the board, it required a slightly longer learning time than the other
models. In comparison, the accuracy of the 70-channel model decreased by 0.72%, its precision
and recall decreased by 0.48% and 1.98%, and its F1-score decreased by 1.37%. Differences in
accuracy, precision, recall, and F1-score across 35 channels were 5%, 5.68%, 5.04%, and 5.37%,
respectively. As the time axis was reduced, performance decreased for each evaluation metric.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F− score = 2× Precision× Recall
Precision + Recall

(6)

Accuracy =
TN + TP

Total number o f samples(N)
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Figure 7 shows the variations in the accuracy and loss in the three models following
training. The training process takes longer and becomes more accurate as the number of
channels increases. The model with the highest accuracy was saved and used for testing.
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Figure 7. (a) 35-channel model accuracy and (b) loss. (c) 70-channel model accuracy and (d) loss.
(e) 140-channel model accuracy and (f) loss.

In the 35-channel model, the loss graph can be observed to decrease gradually. In
comparison, the loss graphs of both other models exhibit a significantly higher decay.
Although the 140-channel model exhibits the highest accuracy, the 70-channel model
decreases and converges the most quickly. This demonstrates how the resolution of the
time axis increases accuracy.
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Figure 8 illustrates the last layer of the spatial extractor obtained by compressing the
time axis. The input characteristics indicate that the characteristic map is accurate owing to
the U-Net structure.
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5. Discussion

Using fMRI data, we built a network to classify patients into AD, CN, EMCI, and
LMCI groups. Although fMRI data are typically normalized to sMRI data, we employed
direct normalization. An experiment was conducted with three models using different
time-axis settings. Specifically, the model input was reduced by a factor of two or four,
and it was restored using a 1 × 1 × 1 kernel. In the spatial feature extractor, the input
layer was adjusted according to the time axis, and the result was used as input in the time
feature extractor. U-Net was used as the spatial feature extractor, and LSTM was used as
the temporal feature extractor. Classification was performed using two fully connected
layers with the extracted features. The three models achieved accuracy scores of 96.43%,
95.71%, and 91.43%.

Figure 9 compares our model with a conventional 3D-CNN model. Although the
3D-CNN model initially achieves the highest accuracy, our model ultimately outperforms
it. The 3D-CNN model reduced the time dimension to 1 through 1 × 1 convolution, and
the experiment was conducted by increasing the channel up to 256 with five convolutional
and max-pooling layers.
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Figure 10 compares the three models in terms of performance. The 140-channel input
model exhibited the highest accuracy at 96.43%. The 70-channel input model obtained
an accuracy of 95.71%. The 35-channel input model exhibited a significant decrease in
accuracy, with a score of 91.43%. Although a single reduction of the time axis does not
significantly impact performance, it can be inferred that accuracy decreases rapidly with
subsequent reductions.
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Table 5 compares the accuracy of the proposed model with that of existing methods.
Although binary classification models obtained accuracy of up to 98.3%, they perform
poorly on multi-class problems. The multi-class model with the highest accuracy of 97.6%
considers only 2D data. For 4D data, the highest obtained accuracy was 89.4%. Our
methodology addresses the multi-class classification problem using 4D data, which exhibits
the highest performance for this task. Given the importance of accurately predicting the
level of MCI in preventing Alzheimer’s disease, the proposed methodology is the superior
prevention tool.

Table 5. Comparison of AD classifiers based on fMRI modality between binary and multi-class
classification. The binary approach classifies between AD and CN, whereas the multi-class approach
classifies between AD, EMCI, LMCI, and CN.

Research Modality Type Accuracy (%)

Sarraf et al. [24] fMRI-2D Binary 96.8
Billones et al. [25] fMRI-2D Binary 98.3

Jain et al. [26] MRI-2D Binary 99.1
Li et al. [27] fMRI-4D Binary 97.3

Parmar et al. [21] fMRI-4D Binary 94.5
Billones et al. [25] fMRI-2D Multi-class 91.8
Kazemi et al. [28] fMRI-2D Multi-class 97.6

Li et al. [27] fMRI-4D Multi-class 89.4
Harshit et al. [21] fMRI-4D Multi-class 94.5

Ours fMRI-4D Multi-class 96.4
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6. Conclusions

We performed an experiment using a model for classifying 4D fMRI data related
to AD among four classes. Spatial information was extracted using U-Net to utilize 4D
fMRI data with temporal-spatial characteristics, and temporal information was extracted
using LSTM. Three models with different time-dimension inputs (140 channel, 70 channel,
and 35 channel) were used, and their respective classification accuracy scores were 96.43%,
95.71%, and 91.43%. Because our dataset was somewhat small, we believe that better results
can be obtained by collecting more data and modifying the network in future experiments.

Author Contributions: Conceptualization, J.-H.N.; Methodology, J.-H.N.; Software, J.-H.N.; Valida-
tion, J.-H.K. and H.-D.Y.; Data curation, J.-H.K.; Supervision, H.-D.Y.; Project administration, H.-D.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the research fund from Chosun University, 2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: In this research, a public dataset was used, which can be found at:
http://adni.loni.usc.edu, accessed on 18 May 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ott, A.; Breteler, M.M.B.; Van Harskamp, F.; Stijnen, T.; Hofman, A. Incidence and Risk of Dementia: The Rotterdam Study. Am. J.

Epidemiol. 1998, 147, 574–580. [CrossRef]
2. Seshadri, S.; Beiser, A.; Au, R.; Wolf, P.A.; Evans, D.A.; Wilson, R.S.; Petersen, R.C.; Knopman, D.S.; Rocca, W.A.; Kawas, C.H.; et al.

Operationalizing Diagnostic Criteria for Alzheimer’s Disease and Other Age-Related Cognitive Impairment—Part 2. Alzheimer’s
Dement. 2011, 7, 35–52. [CrossRef] [PubMed]

3. Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological Alterations in Alzheimer Disease. Cold Spring Harb.
Perspect. Med. 2011, 1, a006189. [CrossRef] [PubMed]

4. McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical Diagnosis of Alzheimer’s Disease.
Neurology 1984, 34, 939. [CrossRef] [PubMed]

5. Petersen, R.C.; Roberts, R.O.; Knopman, D.S.; Boeve, B.F.; Geda, Y.E.; Ivnik, R.J.; Smith, G.E.; Jack, C.R. Mild Cognitive Impairment:
Ten Years Later. Arch. Neurol. 2009, 66, 1447–1455. [CrossRef]

6. Farlow, M.R. Treatment of mild cognitive impairment. Curr. Alzheimer Res. 2009, 6, 362–367. [CrossRef]
7. Eskildsen, S.F.; Coupé, P.; García-Lorenzo, D.; Fonov, V.; Pruessner, J.C.; Collins, D.L. Prediction of Alzheimer’s Disease in Subjects

with Mild Cognitive Impairment from the ADNI Cohort Using Patterns of Cortical Thinning. Neuroimage 2013, 65, 511–521.
[CrossRef]

8. Beheshti, I.; Demirel, H.; Matsuda, H. Classification of Alzheimer’s Disease and Prediction of Mild Cognitive Impairment-to-
Alzheimer’s Conversion from Structural Magnetic Resource Imaging Using Feature Ranking and a Genetic Algorithm. Comput.
Biol. Med. 2017, 83, 109–119. [CrossRef]

9. Syaifullah, A.H.; Shiino, A.; Kitahara, H.; Ito, R.; Ishida, M.; Tanigaki, K. Machine Learning for Diagnosis of AD and Prediction of
MCI Progression from Brain MRI Using Brain Anatomical Analysis Using Diffeomorphic Deformation. Front. Neurol. 2021, 11,
576029. [CrossRef]

10. Nanni, L.; Interlenghi, M.; Brahnam, S.; Salvatore, C.; Papa, S.; Nemni, R.; Castiglioni, I. Comparison of Transfer Learning and
Conventional Machine Learning Applied to Structural Brain MRI for the Early Diagnosis and Prognosis of Alzheimer’s Disease.
Front. Neurol. 2020, 11, 576194. [CrossRef]

11. Dhinagar, N.J.; Thomopoulos, S.I.; Laltoo, E.; Thompson, P.M. Efficiently Training Vision Transformers on Structural MRI Scans
for Alzheimer’s Disease Detection. arXiv 2023, arXiv:2303.08216.

12. Gauthier, S.; Reisberg, B.; Zaudig, M.; Petersen, R.C.; Ritchie, K.; Broich, K.; Belleville, S.; Brodaty, H.; Bennett, D.; Chertkow, H.;
et al. Mild Cognitive Impairment. Lancet 2006, 367, 1262–1270. [CrossRef]

13. Grieder, M.; Wang, D.J.J.; Dierks, T.; Wahlund, L.O.; Jann, K. Default Mode Network Complexity and Cognitive Decline in Mild
Alzheimer’s Disease. Front. Neurosci. 2018, 12, 388987. [CrossRef]

14. Vemuri, P.; Jones, D.T.; Jack, C.R. Resting State Functional MRI in Alzheimer’s Disease. Alzheimers Res. Ther. 2012, 4, 2. [CrossRef]
15. Ogawa, S.; Lee, T.-M.; Nayak, A.S.; Glynn, P. Oxygenation-Sensitive Contrast in Magnetic Resonance Image of Rodent Brain at

High Magnetic Fields. Magn. Reson. Med. 1990, 14, 68–78. [CrossRef]
16. Hojjati, S.H.; Ebrahimzadeh, A.; Khazaee, A.; Babajani-Feremi, A. Predicting Conversion from MCI to AD by Integrating Rs-FMRI

and Structural MRI. Comput. Biol. Med. 2018, 102, 30–39. [CrossRef]

http://adni.loni.usc.edu
https://doi.org/10.1093/oxfordjournals.aje.a009489
https://doi.org/10.1016/j.jalz.2010.12.002
https://www.ncbi.nlm.nih.gov/pubmed/21255742
https://doi.org/10.1101/cshperspect.a006189
https://www.ncbi.nlm.nih.gov/pubmed/22229116
https://doi.org/10.1212/WNL.34.7.939
https://www.ncbi.nlm.nih.gov/pubmed/6610841
https://doi.org/10.1001/archneurol.2009.266
https://doi.org/10.2174/156720509788929282
https://doi.org/10.1016/j.neuroimage.2012.09.058
https://doi.org/10.1016/j.compbiomed.2017.02.011
https://doi.org/10.3389/fneur.2020.576029
https://doi.org/10.3389/fneur.2020.576194
https://doi.org/10.1016/S0140-6736(06)68542-5
https://doi.org/10.3389/fnins.2018.00770
https://doi.org/10.1186/alzrt100
https://doi.org/10.1002/mrm.1910140108
https://doi.org/10.1016/j.compbiomed.2018.09.004


Sensors 2023, 23, 6330 14 of 14

17. Khazaee, A.; Ebrahimzadeh, A.; Babajani-Feremi, A. Classification of Patients with MCI and AD from Healthy Controls Using
Directed Graph Measures of Resting-State FMRI. Behav. Brain Res. 2017, 322, 339–350. [CrossRef]

18. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lect. Notes Comput. Sci.
2015, 9351, 234–241. [CrossRef]

19. Gao, Y.; No, A. Age Estimation from FMRI Data Using Recurrent Neural Network. Appl. Sci. 2022, 12, 749. [CrossRef]
20. Li, H.; Fan, Y. Brain Decoding from Functional Mri Using Long Short-Term Memory Recurrent Neural Networks. Lect. Notes

Comput. Sci. 2018, 11072, 320–328. [CrossRef]
21. Parmar, H.; Nutter, B.; Long, R.; Antani, S.; Mitra, S. Spatiotemporal Feature Extraction and Classification of Alzheimer’s Disease

Using Deep Learning 3D-CNN for FMRI Data. J. Med. Imaging 2020, 7, 056001. [CrossRef]
22. Jack, C.R.; Bernstein, M.A.; Fox, N.C.; Thompson, P.; Alexander, G.; Harvey, D.; Borowski, B.; Britson, P.J.; Whitwell, J.L.; Ward,

C.; et al. The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI Methods. J. Magn. Reson. Imaging 2008, 27, 685–691.
[CrossRef]

23. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015.

24. Sarraf, S.; Tofighi, G. Deep Learning-Based Pipeline to Recognize Alzheimer’s Disease Using FMRI Data. In Proceedings of the
FTC 2016—Proceedings of Future Technologies Conference, San Francisco, CA, USA, 6–7 December 2016; pp. 816–820. [CrossRef]

25. Billones, C.D.; Demetria, O.J.L.D.; Hostallero, D.E.D.; Naval, P.C. DemNet: A Convolutional Neural Network for the Detection of
Alzheimer’s Disease and Mild Cognitive Impairment. In Proceedings of the 2016 IEEE region 10 conference (TENCON), Marina
Bay Sands, Singapore, 22–25 November 2016; pp. 3724–3727. [CrossRef]

26. Jain, R.; Jain, N.; Aggarwal, A.; Hemanth, D.J. Convolutional Neural Network Based Alzheimer’s Disease Classification from
Magnetic Resonance Brain Images. Cogn. Syst. Res. 2019, 57, 147–159. [CrossRef]

27. Li, W.; Lin, X.; Chen, X. Detecting Alzheimer’s Disease Based on 4D FMRI: An Exploration under Deep Learning Framework.
Neurocomputing 2020, 388, 280–287. [CrossRef]

28. Kazemi, Y.; Houghten, S. A Deep Learning Pipeline to Classify Different Stages of Alzheimer’s Disease from FMRI Data. In
Proceedings of the 2018 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB,
Saint Louis, MO, USA, 30 May–2 June 2018; pp. 1–8. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.bbr.2016.06.043
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.3390/app12020749
https://doi.org/10.1007/978-3-030-00931-1_37
https://doi.org/10.1117/1.JMI.7.5.056001
https://doi.org/10.1002/jmri.21049
https://doi.org/10.1109/FTC.2016.7821697
https://doi.org/10.1109/TENCON.2016.7848755
https://doi.org/10.1016/j.cogsys.2018.12.015
https://doi.org/10.1016/j.neucom.2020.01.053
https://doi.org/10.1109/CIBCB.2018.8404980

	Introduction 
	Related Works 
	Alzheimer’s Disease 
	U-Net 
	Time-Series Network 

	Materials and Methods 
	Pre-Processing 
	Model 
	Spatial Feature Extraction 
	Temporal Feature Extractor and Classifier 
	Hyperparameters 

	Experimental Results 
	Proposed Model 
	Performance Metrics 

	Discussion 
	Conclusions 
	References

